A direct and stereoselective route to (Z)-2-iodoalk-2-enes via β-oxido phosphonium ylides

Yanchang Shen* and Shu Gao
Shanghai Institute of Organic Chemistry, Academia Sinica, 354 Fenglin Lu, Shanghai 200032, China

(Z)-2-Iodoalk-2-enes have been synthesized with high stereoselectivity by direct reaction of β-oxido phosphonium ylides with 1,2 -diiodoethane.

Vinyl iodides of defined stereochemistry are useful building blocks in organic synthesis, particularly for the synthesis of biologically active compounds. ${ }^{1}$ Although a variety of methods have been reported for the stereocontrolled preparation of alkenyl iodides from acetylenic precursors they are multi-step procedures. ${ }^{2}$ Furthermore, the preparation of 2-iodoalk-2-enes from acetylenic precursors has limited application because of difficulties in controlling the regioselective hydrometallation of the internal triple bond. ${ }^{3}$ Not only does the reaction of aldehydes with Wittig reagents $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHX}\right)$ usually give a mixture of Z - and E-isomers but the preparation of the ylide is quite complicated. ${ }^{4} \beta$-Oxido ylides, first reported by Schlosser, have the potential to react with a variety of halogenating reagents to afford vinyl halides, ${ }^{5}$ although Corey et al. found that their reaction with iodine failed to do so. ${ }^{5 a}$ An indirect method using mercuric acetate and THF-HMPA, followed by a reaction with anhydrous lithium iodide-iodine, was claimed. ${ }^{5 d}$ Because of the importance of vinyl iodides we have studied their synthesis and have found a direct and stereoselective method for the preparation of (Z)-2-iodoalk-2-enes in moderate yields ($32-51 \%, 4$ steps) from 1,2 -diiodoethane and β-oxido ylides. The reaction sequence is shown as follows:

The β-oxido ylides 4 , generated from ethylene(triphenyl)phosphorane 2, aldehydes and butyllithium reacted with diiodoethane to give 2 -iodoalk-2-enes 6 with the Z-isomer as major product. The results are listed in Table 1.

The reaction is of wide scope and, since R may be aromatic or aliphatic, should be useful in the synthesis of biologically active compounds.

Table 1 2-Iodoalk-2-enes 6

Compd.	R	$\begin{aligned} & \text { Yield }^{a} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Ratio }^{b} \\ & Z: E \end{aligned}$
6 a	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	34	94:6
6b	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	35	92:8
6 c	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	48	95:5
6 d	$n-\mathrm{C}_{9} \mathrm{H}_{19}$	36	90:10
6 e	Ph	32	93:7
6	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	41	98:2
6g	4-MeOC6 ${ }_{6}$	51	97:3
6 h	4-FC6 H_{4}	39	97:3

${ }^{a}$ Isolated yields. The products were characterized on the basis of spectroscopic evidence. ${ }^{b}$ The ratios of Z - and E-isomers were estimated on the basis of their NMR spectra.

Experimental

IR spectra were obtained as films on a Shimadzu IR-440 spectrometer. NMR spectra (chemical shifts in ppm from internal TMS for ${ }^{1} \mathrm{H}$ NMR and from external TFA for ${ }^{19} \mathrm{~F}$ NMR) were measured on a Bruker AM-300 spectrometer at 300 MHz or a Varian EM- 360 spectrometer at 60 MHz with CDCl_{3} as solvent. Mass spectra were recorded on Finnigan GC-MS 4021 or MHT8430 mass spectrometers.

General procedures for the preparation of 2-iodoalk-2-enes

To a suspension of ethyl(triphenyl)phosphonium bromide (4 mmol) in THF $\left(20 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ under nitrogen was added butyllithium (4 mmol) in hexane. After being stirred at 0 to $25^{\circ} \mathrm{C}$ for 30 min , the clear solution was cooled to $-78^{\circ} \mathrm{C}$ and treated with the aldehyde (4 mmol). After 10 min butyllithium (4 mmol) in hexane was added to the yellow solution which turned deep red and was then stirred first at $-78^{\circ} \mathrm{C}$ for 5 min , then at $0^{\circ} \mathrm{C}$ for 2 min and finally at $-78^{\circ} \mathrm{C}$. After 1,2-diiodoethane (5 mmol) had been added to the mixture it was warmed to $25^{\circ} \mathrm{C}$, stirred for 30 min and then evaporated to give a residue. This was purified by column chromatography on silica gel eluting with light petroleum (bp $60-90^{\circ} \mathrm{C}$) to afford the product 6 .

2-Iodooct-2-ene 6a. ${ }^{6}$-Oil, $v_{\max } / \mathrm{cm}^{-1} 1650,1460,1375$ and $660 ; m / z 238\left(\mathrm{M}^{+}, 56\right), 181(15)$ and $111(5) ; \delta_{\mathrm{H}} 6.15(\mathrm{~m}, 0.06$ $\mathrm{H}, E-3-\mathrm{H}), 5.40(\mathrm{tq}, 0.94 \mathrm{H}, J 7.0,1.4, Z-3 \mathrm{H}), 2.49(\mathrm{~d}, 0.94 \times$ $3 \mathrm{H}, J 1.4, Z-1-\mathrm{H}), 2.36(\mathrm{~m}, 0.06 \times 3 \mathrm{H}, E-1-\mathrm{H}), 2.14-1.97(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.17(\mathrm{~m}, 6 \mathrm{H})$ and $0.90(\mathrm{t}, 3 \mathrm{H}, J 6.9)$.

2-Iodonon-2-ene 6b. ${ }^{7}$ - Oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1650,1460,1335$ and $665 ; m / z 252\left(\mathrm{M}^{+}, 21\right), 238(6), 83(46)$ and $69(100) ; \delta_{\mathrm{H}} 6.15$ (tq, $0.08 \mathrm{H}, J 1.4, E-3-\mathrm{H}), 5.40(\mathrm{tq}, 0.92 \mathrm{H}, J 6.7,1.5, Z-3-\mathrm{H})$, $2.48(\mathrm{~d}, 0.92 \times 3 \mathrm{H}, J 1.5, Z-1-\mathrm{H}), 2.36(\mathrm{~d}, 0.08 \times 3 \mathrm{H}, J 1.4$, $E-1-\mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 8 \mathrm{H})$ and $0.89(\mathrm{t}, 3 \mathrm{H}$, $J 6.8$).

2-Iodoundec-2-ene $\mathbf{6 c} .^{8}$ - Oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1645,1460,1375$ and $660 ; m / z 280\left(\mathrm{M}^{+}, 37\right), 181(18), 97(74)$ and $55(100) ; \delta_{\mathbf{H}} 6.14$
(m, $0.05 \mathrm{H}, E-3-\mathrm{H}), 5.40(\mathrm{tq}, 0.95 \mathrm{H}, J 6.8,1.3, Z-3-\mathrm{H}), 2.49(\mathrm{~d}$, $0.95 \times 3 \mathrm{H}, J 1.5, Z-1-\mathrm{H}), 2.35(\mathrm{~d}, 0.05 \times 3 \mathrm{H}, J 1.4, E-1-\mathrm{H})$, $2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.17(\mathrm{~m}, 12 \mathrm{H})$ and $0.88(\mathrm{t}, 3 \mathrm{H}, J 7.0)$.

2-Iodododec-2-ene 6d.-Oil, $v_{\max } / \mathrm{cm}^{-1} 1640,1460,1380$ and $660 ; m / z 294\left(\mathbf{M}^{+}, 57\right), 181(23), 168(35)$ and $55(100) ;$ HRMS $m / z 294.0813(M$, requires 294.0845$) ; \delta_{\mathrm{H}} 6.15(\mathrm{tq}, 0.10 \mathrm{H}, J 6.8$, $1.4, E-3-\mathrm{H}), 5.40(\mathrm{tq}, 0.90 \mathrm{H}, J 6.7,1.4, Z-3-\mathrm{H}), 2.49(\mathrm{~d}, 0.9 \times 3$ $\mathrm{H}, J 1.4, Z-1-\mathrm{H}), 2.34(\mathrm{~d}, 0.1 \times 3 \mathrm{H}, J 1.4, E-1-\mathrm{H}), 2.10-2.00$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.20(\mathrm{~m}, 14 \mathrm{H})$ and $0.88(\mathrm{t}, 3 \mathrm{H}, J 6.4)$.

2-Iodo-3-phenylprop-2-ene 6e. ${ }^{9}$-Oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1600,1490$, 1270 and $695 ; m / z 244\left(\mathrm{M}^{+}, 40\right), 117$ (73), 115 (100) and 91 (46); $\delta_{\mathrm{H}} 7.45-7.25(\mathrm{~m}, 5.07 \mathrm{H}, \mathrm{ArH}$ and $E-3-\mathrm{H}), 6.66(\mathrm{~m}, 0.93 \mathrm{H}$, $Z-3-\mathrm{H}), 2.73(\mathrm{~d}, 0.93 \times 3 \mathrm{H}, J 1.5, Z-1-\mathrm{H})$ and $2.64(\mathrm{~d}, 0.07 \times$ $3 \mathrm{H}, J 1.6, E-1-\mathrm{H})$.

2-Iodo-3(p-tolyl)prop-2-ene 6f.-Oil, $v_{\max } / \mathrm{cm}^{-1} 1640,1510$, 1480 and $660 ; m / z 258\left(\mathrm{M}^{+}, 100\right), 131$ (59) and 116 (37); HR MS $m / z 257.9930$ (M, requires 257.9906); $\delta_{\mathrm{H}} 7.38-7.15$ (m, $4.02 \mathrm{H}, \mathrm{ArH}$ and $E-3-\mathrm{H}), 6.62(\mathrm{~m}, 0.98 \mathrm{H}, Z-3-\mathrm{H}), 2.70(\mathrm{~d}$, $0.98 \times 3 \mathrm{H}, J 1.5, Z-1-\mathrm{H}), 2.62(\mathrm{~d}, 0.02 \times 3 \mathrm{H}, J 1.5, E-1-\mathrm{H})$ and $2.35(\mathrm{~s}, 3 \mathrm{H})$.

2-Iodo-3(p-methoxylphenyl)prop-2-ene $\mathbf{6 g} .-\mathrm{Oil}, \quad v_{\max } / \mathrm{cm}^{-1}$ $1610,1510,1175$ and $530 ; m / z 274\left(\mathrm{M}^{+}, 100\right), 147(36)$ and 132 (11); HRMS $m / z 273.9833\left(M\right.$, requires 273.9855); $\delta_{\mathrm{H}} 7.47-$ $6.85(\mathrm{~m}, 4.03 \mathrm{H}, \mathrm{ArH}$ and $E-3-\mathrm{H}), 6.59(\mathrm{~m}, 0.97 \mathrm{H}, Z-3-\mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.69(\mathrm{~d}, 0.97 \times 3 \mathrm{H}, J 1.4, Z-1-\mathrm{H})$ and $2.61(\mathrm{~d}, 0.03 \times$ $3 \mathrm{H}, J 1.4, E-1-\mathrm{H})$.

2-Iodo-3(p-fluorophenyl)prop-2-ene $\quad \mathbf{6 h}$.-Oil, $\quad \boldsymbol{v}_{\text {max }} / \mathrm{cm}^{1}$ $1600,1500,1235$ and $570 ; m / z 262\left(\mathbf{M}^{+}, 100\right), 135(79)$ and 115 (48); HRMS $m / z 261.9669$ (M, requires 261.9655); $\delta_{\mathrm{H}} 7.45-$ $6.93(\mathrm{~m}, 4.03 \mathrm{H}, \mathrm{ArH}$ and $E-3-\mathrm{H}), 6.60(\mathrm{~m}, 0.97 \mathrm{H}, Z-3-\mathrm{H}), 2.70$ $(\mathrm{d}, 0.97 \times 3 \mathrm{H}, J 1.6, Z-1-\mathrm{H})$ and $2.58(\mathrm{~d}, 0.03 \times 3 \mathrm{H}, J 1.6$, $E-1-\mathrm{H}) ; \delta_{\mathrm{F}} 35.7(\mathrm{~s}, 1 \mathrm{~F})$.

Acknowledgements

The authors thank the National Natural Science Foundation of China, Laboratory of Organometallic Chemistry and Academia Sinica for financial support.

References

1 (a) M. Ramaiah, Tetrahedron, 1987, 43, 3541; (b) R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985; (c) G. Stork and K. Zhao, Tetrahedron Lett., 1989, 30, 2173; (d) Y. Sato, T. Honda and M. Shibasaki, Tetrahedron Lett., 1992, 33, 2593.
2 X.-P. Zhang and M. Schlosser, Tetrahedron Lett., 1993, 34, 1925 and references cited therein.
3 J. Chen, T. Wang and K. Zhao, Tetrahedron Lett., 1994, 35, 2827.
4 T. Takai, K. Nitta and K. Utimoto, J. Am. Chem. Soc., 1986, 108, 7408.

5 (a) M. Schlosser and K. F. Christmann, Angew. Chem., Int. Ed. Engl., 1966, 5, 126; (b) M. Schlosser and K. F. Christmann, Liebigs Ann. Chem., 1967, 708, 1; (c) M. Schlosser and K. F. Christmann, Synthesis, 1969, 38; (d) E. J. Corey, J. I. Shulman and H. Yamamoto, Tetrahedron Lett., 1970, 447; (e) P. A. Grieco, T. Takigawa and T. R. Vedananda, J. Org. Chem., 1985, 50, 3111.

6 D. H. R. Barton, G. Bashiarades and J. L. Fourrey, Tetrahedron, 1988, 44, 147.
7 H. Oda, Y. Morizawa and K. Oshima, Tetrahedron Lett., 1984, 25, 3221.

8 S. Hara, S. Takinami, S. Hyuga and A. Suzuki, Chem. Lett., 1984, 345.

9 H. J. Bestimann and A. Bomhard, Angew. Chem., 1982, 94, 562.

Paper 5/01341K
Received 6th March 1995
Accepted 30th March 1995

